首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1902篇
  免费   168篇
  国内免费   190篇
  2023年   21篇
  2022年   39篇
  2021年   121篇
  2020年   83篇
  2019年   111篇
  2018年   109篇
  2017年   63篇
  2016年   92篇
  2015年   104篇
  2014年   154篇
  2013年   161篇
  2012年   169篇
  2011年   161篇
  2010年   94篇
  2009年   82篇
  2008年   103篇
  2007年   72篇
  2006年   55篇
  2005年   58篇
  2004年   48篇
  2003年   53篇
  2002年   40篇
  2001年   21篇
  2000年   19篇
  1999年   35篇
  1998年   16篇
  1997年   21篇
  1996年   20篇
  1995年   14篇
  1994年   18篇
  1993年   8篇
  1992年   10篇
  1991年   21篇
  1990年   11篇
  1989年   11篇
  1988年   7篇
  1987年   6篇
  1986年   6篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1982年   4篇
  1981年   1篇
  1980年   3篇
  1978年   2篇
  1973年   1篇
  1965年   1篇
排序方式: 共有2260条查询结果,搜索用时 15 毫秒
71.
72.
73.
Protein purification is the vital basis to study the function, structure and interaction of proteins. Widely used methods are affinity chromatography-based purifications, which require different chromatography columns and harsh conditions, such as acidic pH and/or adding imidazole or high salt concentration, to elute and collect the purified proteins. Here we established an easy and fast purification method for soluble proteins under mild conditions, based on the light-induced protein dimerization system improved light-induced dimer (iLID), which regulates protein binding and release with light. We utilize the biological membrane, which can be easily separated by centrifugation, as the port to anchor the target proteins. In Xenopus laevis oocyte and Escherichia coli, the blue light-sensitive part of iLID, AsLOV2-SsrA, was targeted to the plasma membrane by different membrane anchors. The other part of iLID, SspB, was fused with the protein of interest (POI) and expressed in the cytosol. The SspB-POI can be captured to the membrane fraction through light-induced binding to AsLOV2-SsrA and then released purely to fresh buffer in the dark after simple centrifugation and washing. This method, named mem-iLID, is very flexible in scale and economic. We demonstrate the quickly obtained yield of two pure and fully functional enzymes: a DNA polymerase and a light-activated adenylyl cyclase. Furthermore, we also designed a new SspB mutant for better dissociation and less interference with the POI, which could potentially facilitate other optogenetic manipulations of protein–protein interaction.  相似文献   
74.
【目的】肠道是动物的主要消化器官,同时也是机体抵抗外源病原菌的重要屏障,已有研究表明,动物的品种、饲养方式、生长阶段均会影响动物的肠道菌群结构,但对舍饲和放牧饲养条件下藏猪的肠道菌群结构,以及藏猪和长白、约克与杜洛克三元杂交猪(DLY猪)的肠道菌群结构是否有差异,尚未见报道。【方法】本研究选取6–7月龄的放牧藏猪、舍饲藏猪和DLY猪的小肠组织,分别采用组织切片法测定各试验猪的肠道形态、酶活性测定试剂盒测定肠道内容物的消化酶活性,高通量测序法测定肠道微生物。【结果】DLY猪小肠的肌层厚度和绒毛高度高于藏猪,而隐窝深度低于藏猪;舍饲藏猪和放牧藏猪的小肠形态没有显著变化。DLY猪小肠的胰蛋白酶活性高于藏猪,而淀粉酶活性低于藏猪。三组猪小肠微生物的优势菌门均为Proteobacteria、Firmicutes和Bacteroidetes;藏猪的优势菌属为Ralstonia和Escherichia,而DLY猪的优势菌属为Ralstonia和Bradyrhizobium,但含量却存在显著性差异。舍饲藏猪与放牧藏猪肠道菌群结构相似度较高,而藏猪与DLY猪肠道菌群结构相似度较低。【结论】放牧藏猪、舍饲藏猪和DLY猪的小肠形态、消化酶活性和肠道菌群结构均存在显著性差异。  相似文献   
75.
环介导等温扩增(LAMP)技术是一种新兴的核酸恒温扩增技术,与微流控芯片技术相结合,可实现对病原菌的快速检测,具有特异性强、灵敏度高、操作简单等优点。本文根据不同终产物的检测方法对目前检测病原菌的相关微流控LAMP芯片进行了分类与介绍,并对技术的改进和存在的问题进行了分析,以期为后续的相关研究提供参考。  相似文献   
76.
平须舞虻属Platypalpus Macquart是舞虻科中最大的属之一,已知550余种分布世界各地.四川以前已知8种.本文记述四川平须舞虻属3新种:短芒平须舞虻Platypalpus breviarista sp.nov.,微距平须舞虻Platypalpus minor sp.nov.和亚丁平须舞虻Platypalpus yadinganus sp.nov,均属于长角平须舞虻种团Platypalpus longicornis species group,并编制了四川平须舞虻属分种检索表.  相似文献   
77.
Pathogens secrete a large number of effectors that manipulate host processes to create an environment conducive to pathogen colonization. However, the underlying mechanisms by which Plasmopara viticola effectors manipulate host plant cells remain largely unclear. In this study, we reported that RXLR31154, a P. viticola RXLR effector, was highly expressed during the early stages of P. viticola infection. In our study, stable expression of RXLR31154 in grapevine (Vitis vinifera) and Nicotiana benthamiana promoted leaf colonization by P. viticola and Phytophthora capsici, respectively. By yeast two-hybrid screening, the 23-kDa oxygen-evolving enhancer 2 (VpOEE2 or VpPsbP), encoded by the PsbP gene, in Vitis piasezkii accession Liuba-8 was identified as a host target of RXLR31154. Overexpression of VpPsbP enhanced susceptibility to P. viticola in grapevine and P. capsici in N. benthamiana, and silencing of NbPsbPs, the homologs of PsbP in N. benthamiana, reduced P. capcisi colonization, indicating that PsbP is a susceptibility factor. RXLR31154 and VpPsbP protein were co-localized in the chloroplast. Moreover, VpPsbP reduced H2O2 accumulation and activated the 1O2 signaling pathway in grapevine. RXLR31154 could stabilize PsbP. Together, our data revealed that RXLR31154 reduces H2O2 accumulation and activates the 1O2 signaling pathway through stabilizing PsbP, thereby promoting disease.  相似文献   
78.
Fragile X syndrome (FXS), a common form of inherited mental retardation, is caused by the lack of fragile X mental retardation protein (FMRP). The animal model of FXS, Fmr1 knockout mice, have deficits in the Morris water maze and trace fear memory tests, showing impairment in hippocampus-dependent learning and memory. However, results for synaptic long-term potentiation (LTP), a key cellular model for learning and memory, remain inconclusive in the hippocampus of Fmr1 knockout mice. Here, we demonstrate that FMRP is required for glycine induced LTP (Gly-LTP) in the CA1 of hippocampus. This form of LTP requires activation of post-synaptic NMDA receptors and metabotropic glutamateric receptors, as well as the subsequent activation of extracellular signal-regulated kinase (ERK) 1/2. However, paired-pulse facilitation was not affected by glycine treatment. Genetic deletion of FMRP interrupted the phosphorylation of ERK1/2, suggesting the possible role of FMRP in the regulation of the activity of ERK1/2. Our study provide strong evidences that FMRP participates in Gly-LTP in the hippocampus by regulating the phosphorylation of ERK1/2, and that improper regulation of these signaling pathways may contribute to the learning and memory deficits observed in FXS.  相似文献   
79.
Influence of light on ascorbate formation and metabolism in apple fruits   总被引:1,自引:0,他引:1  
To further understand the regulatory mechanism of light on the formation of ascorbic acid (AsA) in the sink organs of plants, a systematical investigation on AsA levels, activities of two key biosynthsis enzymes and their mRNA expression as well as the recycling was performed in the fruits of apple (Malus domestica Borkh), under different levels of shade. After the whole trees were shaded with the sun-light about 50–55% for 20 days, AsA levels were significantly decreased in fruit peel, flesh and leaves, while mRNA expression levels and activities of l-galactose dehydrogenase (l-GalDH, EC 1.1.1.117) and l-galactono-1,4-lactone dehydrogenase (l-GalLDH, EC 1.3.2.3) as well as activities of recycling enzymes was clearly declined in the leaf and peel but not in the flesh. By shading fruits only for 20 days, AsA levels, relative mRNA levels and activities of l-GalDH and l-GalLDH as well as activities of recycling enzymes all showed obvious decrease in the peel, but not in the flesh. However, their levels in the peel were markedly increased after the full shade was removed and re-exposed these fruits on natural light for 5 days. It is concluded that light affects AsA biosynthesis and recycling in the peel and leaf, but did not in the fresh. Results also suggest that apple fruit is potential to biosynthesize AsA via the l-galactose pathway, and AsA content in the fruits may depend partly on levels of AsA or other photochemistry controlled by light in the leaves.  相似文献   
80.
Sugar transporters are central machineries to mediate cross-membrane transport of sugars into the cells, and sugar availability may serve as a signal to regulate the sugar transporters. However, the mechanisms of sugar transport regulation by signal sugar availability remain unclear in plant and animal cells. Here, we report that a sucrose transporter, MdSUT1, and a sorbitol transporter, MdSOT6, both localized to plasma membrane, were identified from apple (Malus domestica) fruit. Using a combination of the split-ubiquitin yeast two-hybrid, immunocoprecipitation, and bimolecular fluorescence complementation assays, the two distinct sugar transporters were shown to interact physically with an apple endoplasmic reticulum-anchored cytochrome b5 MdCYB5 in vitro and in vivo. In the yeast systems, the two different interaction complexes function to up-regulate the affinity of the sugar transporters, allowing cells to adapt to sugar starvation. An Arabidopsis (Arabidopsis thaliana) homolog of MdCYB5, AtCYB5-A, also interacts with the two sugar transporters and functions similarly. The point mutations leucine-73 → proline in MdSUT1 and leucine-117 → proline in MdSOT6, disrupting the bimolecular interactions but without significantly affecting the transporter activities, abolish the stimulating effects of the sugar transporter-cytochrome b5 complex on the affinity of the sugar transporters. However, the yeast (Saccharomyces cerevisiae) cytochrome b5 ScCYB5, an additional interacting partner of the two plant sugar transporters, has no function in the regulation of the sugar transporters, indicating that the observed biological functions in the yeast systems are specific to plant cytochrome b5s. These findings suggest a novel mechanism by which the plant cells tailor sugar uptake to the surrounding sugar availability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号